

Thrombosis and Anticoagulation

Gregory Piazza, MD, MS
Staff Physician
Division of Cardiovascular Medicine, Department of Medicine
Brigham and Women's Hospital
Associate Professor of Medicine
Harvard Medical School

Gregory Piazza, MD, MS

University of Massachusetts Medical School Medicine Residency @ Beth Israel Deaconess Medical Center Cardiovascular Medicine Fellowship @ Beth Israel Deaconess Medical Center

Vascular Medicine Fellowship @ BWH Associate Professor of Medicine@ HMS Director, Vascular Medicine @ BWH

- Clinical focus: Thrombosis and Vascular Medicine
- Research focus: Thrombosis

DISCLOSURES

Research Grants: BMS/Pfizer, Janssen, Alexion, Bayer, Amgen, BSC, NIH Esperion, 1R01HL164717-01

Advisory Role: BSC, Amgen, BCRI, PERC, NAMSA, BMS, Janssen, Regeneron

OBJECTIVES

1. Review the epidemiology and pathophysiology of VTE

2. Discuss the risk stratification of PE and DVT

 Apply evidence- and pathophysiology-based strategies to manage PE patients

Association Between Black Race, Clinical Severity, and Management of PE

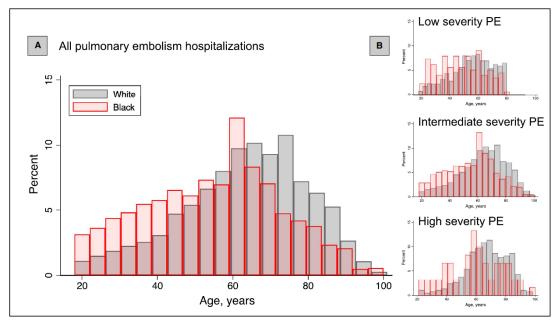


Figure 2. Age of hospitalization for pulmonary embolism by age, per classification for severity in the full cohort.

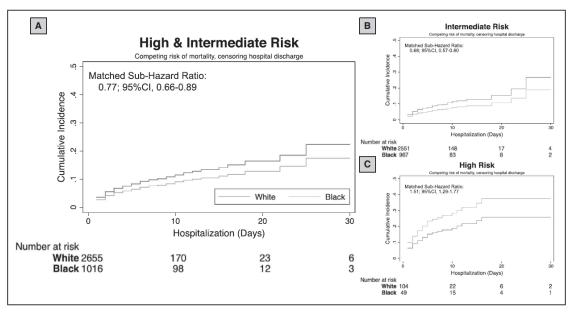
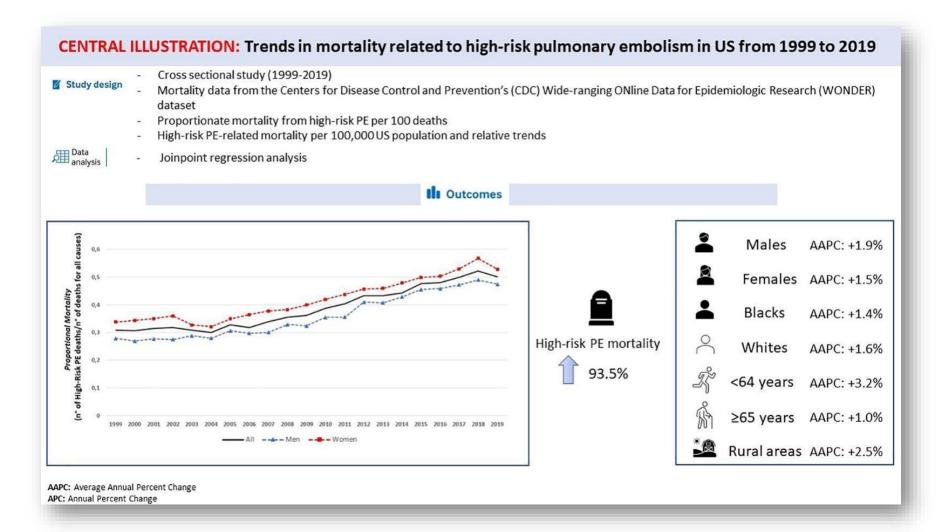
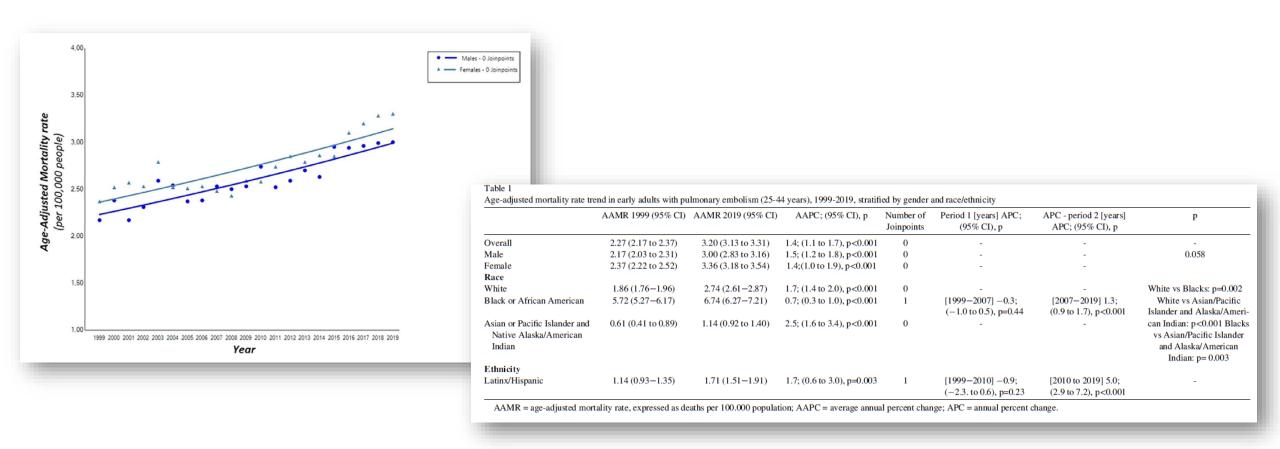



Figure 4. Cumulative hazard of the risk of in-hospital procedures overall among intermediate and high-severity pulmonary embolisms in the matched cohort together (A) and separately (B and C).



US Mortality Trends in Patients with High-Risk PE

US Mortality Trends in Early Adults with PE

When Innovation Fails: Barriers to Health Equity

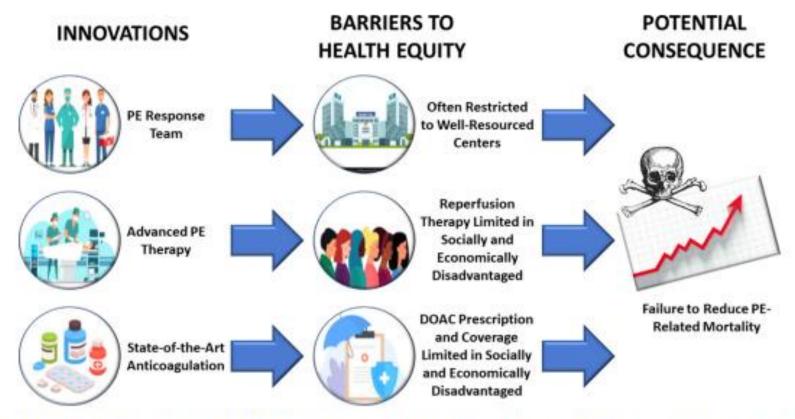
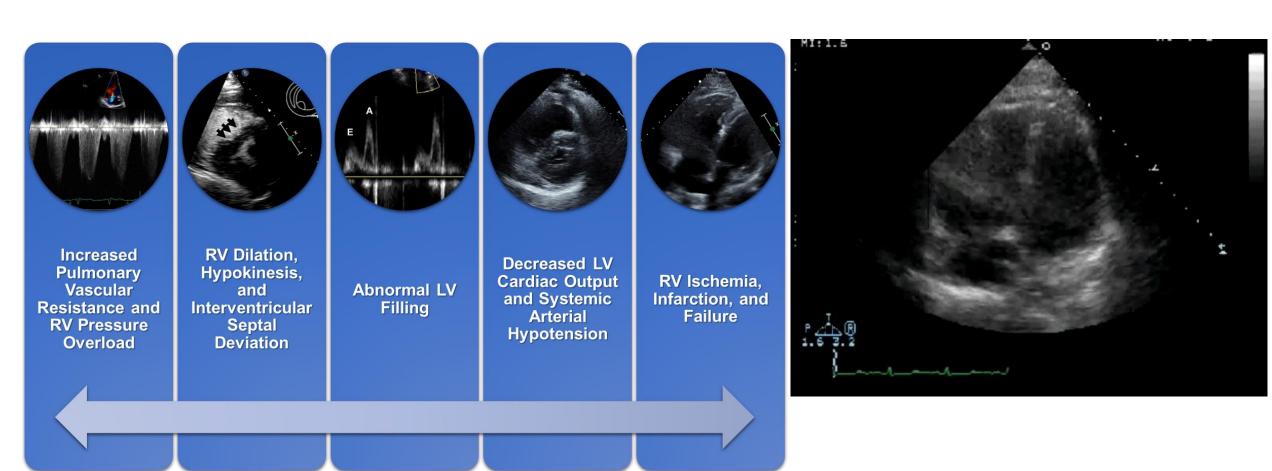
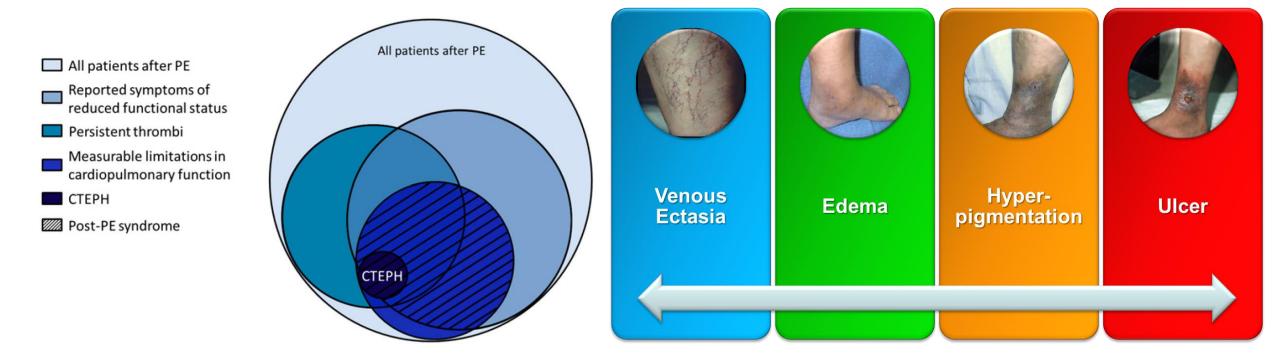



FIGURE Health equity barriers to innovation in pulmonary embolism clinical care and failure to reduce mortality. DOAC, direct oral anticoagulant; PE, pulmonary embolism.



Pathophysiology of PE

Long-Term Complications of PE and DVT

Case No. 1

A 78-year-old man with colon cancer status post colectomy presents with sudden onset pleuritic pain, dyspnea, and right ankle edema.

He is tachycardic to 118 bpm, normotensive at 100/62 mmHg, and hypoxemic with an O_2 saturation of 90% on room air.

His high sensitivity cardiac troponin T is increased.

He undergoes chest CT angiography to assess for PE.

Question No. 1

In which risk category would you place this patient?

- a) Low-risk PE
- b) Intermediate-low-risk PE
- c) Intermediate-high-risk PE
- d) High-risk PE

Question No. 1

In which risk category would you place this patient?

- a) Low-risk PE
- b) Intermediate-low-risk PE
- c) Intermediate-high-risk PE
- d) High-risk PE

Explanation: normal systemic blood pressure and two markers of RV dysfunction distinguishes intermediate-high-risk PE.

Spectrum of Disease

High-Risk (Massive) PE (~5%)

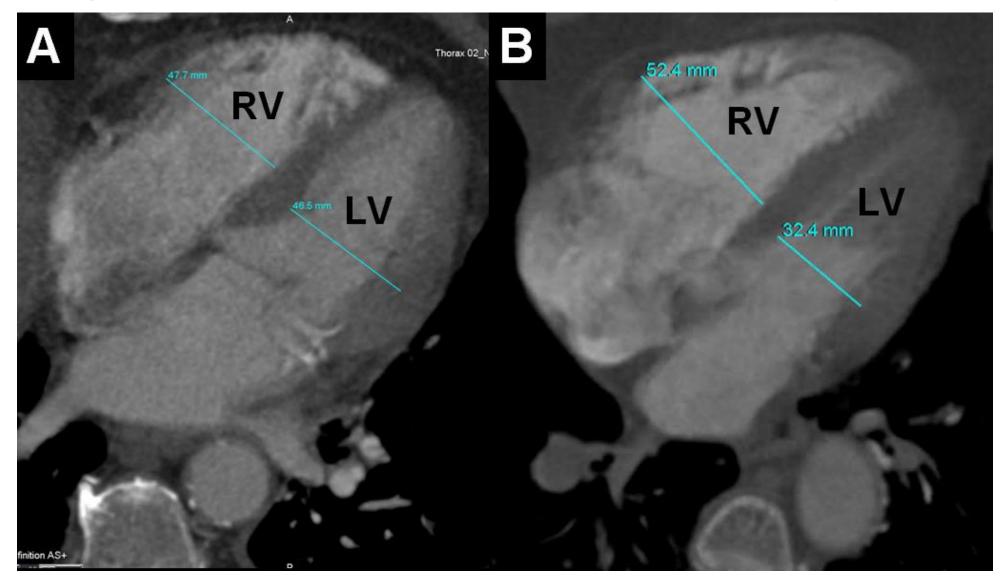
- Hypotension, syncope, cardiogenic shock, cardiac arrest
- Respiratory failure
- Often fatal if aggressive care not instituted

Catastrophic PE (<1%)

- "Super-massive PE"
- Refractory cardiogenic shock
- Ongoing CPR

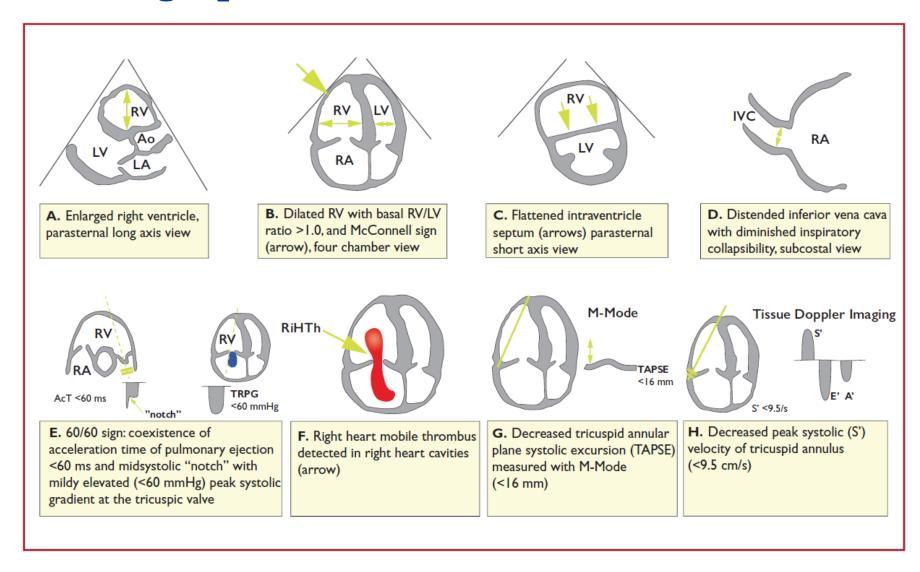
Intermediate-Risk (Submassive) PE (~25%)

- Normotensive
- Right ventricular (RV) dysfunction is present
- Increased risk of adverse outcomes



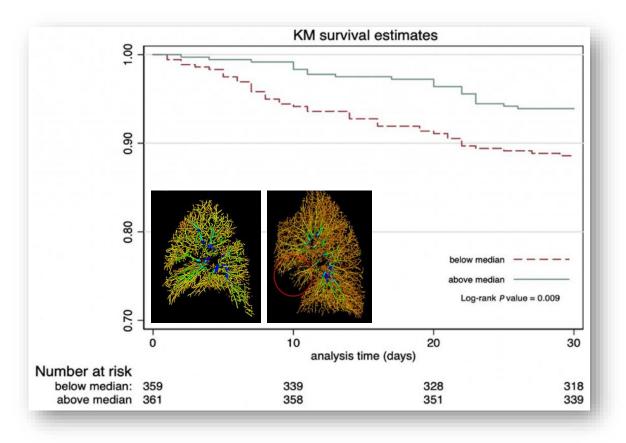
Low-Risk PE (~70%)

- Normotensive
- Normal RV function
- Excellent prognosis with anticoagulation alone



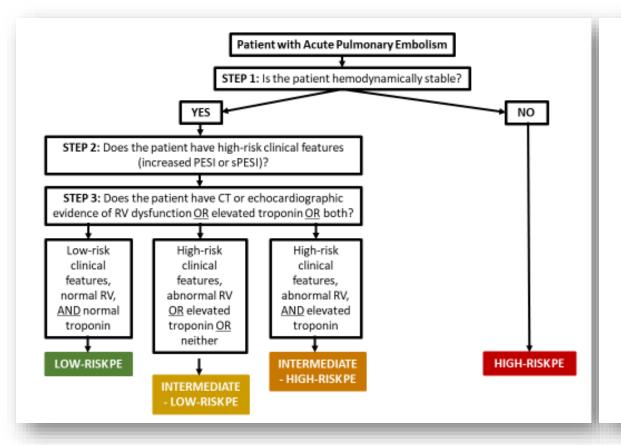
RV Enlargement on CT Predicts Increased 30-Day Mortality

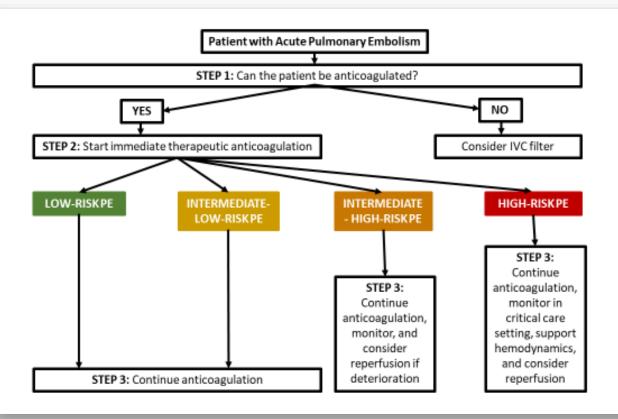
Echocardiographic Assessment of RV in PE


Clot-Burden: PE Outcomes

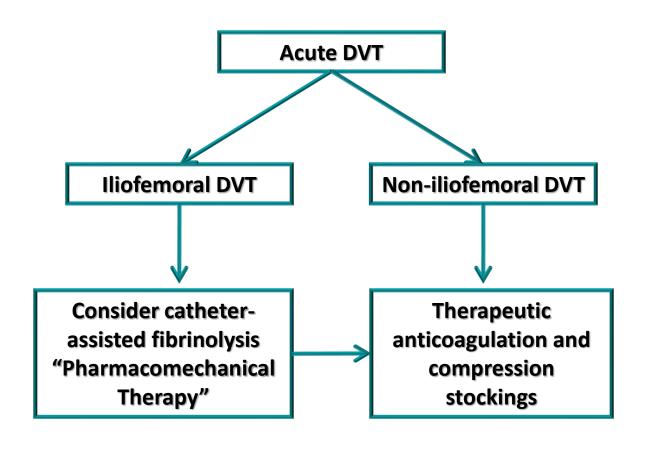
/ariable	Survivors (n = 596)	Deceased Patients (n = 39)	P Value
No. of PEs*	2.0 (3.1 ± 3.1)	2.0 (2.5 ± 2.1)	.247
Proximal level of PE ^t			
Mediastinal PA	172 (28.8)	10 (25.6)	_
Lobar PA	145 (24.3)	6 (15.4)	.520
Segmental PA	183 (30.7)	19 (48.7)	.152
Subsegmental PA	96 (16.1)	4 (10.2)	.582
Qanadli score (%)*	12.5 (17.0 ± 15.9)	7.5 (17.1 ± 19.6)	.995
Mastora score (%)*	5.1 (10.4 ± 13.1)	3.2 (11.4 ± 17.1)	.659
Blood clot volume (mm3)*	927.3 (3556.4 ± 6598.3)	630.4 (3211.8 ± 679.7)	.750

Table 4. Cox Proportional Hazard Model Assessing the Hazard Ratio of a Reduction in Small Venous Blood Volume With 30- and 90-Day Mortality After Adjusting for Age, Sex, Lung Volume, Small Arterial Blood Volume, Abnormal RV:LV Ratio, and Presence of Cancer


	Univariable analysis			Multivariable analysis			
Mortality	HR	CI	P value	HR	CI	P value	
30-day	1.47	0.95-2.32	0.08	2.52	1.51-4.45	<0.001	
90-day	1.06	0.68-1.33	0.77	1.66	1.10-2.50	0.016	


Hazard ratios reported here are per 1 SD (17.84 mL) decrease in small venous volume. HR indicates hazard ratio; LV, left ventricle; and RV, right ventricle.

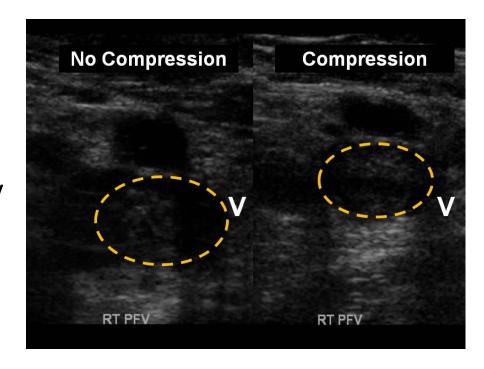
Risk Stratification for PE



Risk Stratification Recommendations

Suggested Not Addressed Not Recommended	ESC/ ERS [2]	PERT [12]	CHEST [13]	AHA [14]	ASH [15]	NICE [20]
Recommendation for risk stratification	Ø	Ø	⚠ a	0		<u> </u>
Definition provided for low-risk PE	Ø	Ø	Ø	0	Ø	
Definition provided for intermediate-risk (submassive) PE	Ø	Ø	(1)	O	Ø	
Definition provided for intermediate-low risk PE	Ø	Ø	<u> </u>	(1)		<u> </u>
Definition provided for intermediate-high risk PE	Ø	Ø	(1)	(1)	<u> </u>	<u> </u>
Definition provided for PE deterioration		Ø	Ø	1		<u> </u>
Definition provided for high-risk (massive) PE	Ø	Ø	Ø	Ø	Ø	<u> </u>
Early discharge or entirely home-based care for low-risk PE	⊘ c	Ø	Ø	⊕ b	Ø	
Use of a multidisciplinary PERT	Ø	Ø	1	<u> </u>	∆ d	0

Risk Stratification for Acute DVT



Case No. 2

A 39-year-old woman with obesity, type 2 diabetes, and hypertension presents with right leg edema and pain 1 week after cholecystectomy for gallstones.

She admits to being quite sedentary post-operatively and has mostly been binge-watching her favorite streaming shows.

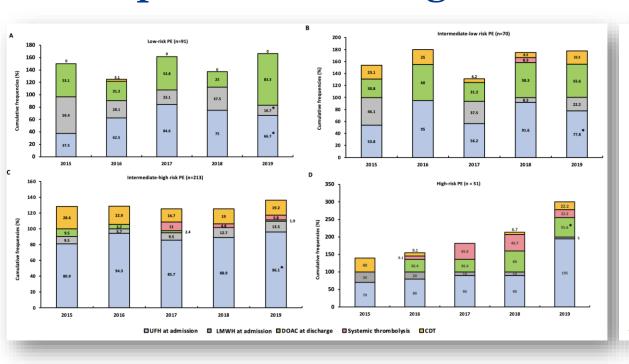
Venous ultrasound demonstrates right femoral DVT.

Question No. 2

Which of the following is the most appropriate next step in management?

- a) Start enoxaparin 120 mg twice daily
- b) Start dabigatran 150 mg twice daily
- c) Start rivaroxaban 15 mg twice daily for 3 weeks then switch to 20 mg daily
- d) Start edoxaban 90 mg once daily
- e) Start apixaban 2.5 mg twice daily

Question No. 2


Which of the following is the most appropriate next step in management?

- a) Start enoxaparin 120 mg twice daily
- b) Start dabigatran 150 mg twice daily
- c) Start rivaroxaban 15 mg twice daily for 3 weeks then switch to 20 mg daily
- d) Start edoxaban 90 mg once daily
- e) Start apixaban 2.5 mg twice daily

Explanation: Rivaroxaban 15 mg twice daily for 3 weeks then 20 mg daily is the only correct FDA-approved regimen listed for acute DVT.

Immediate Anticoagulation for PE: Lessons from PE Response Team Registries

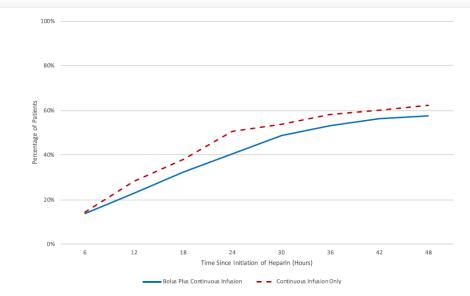
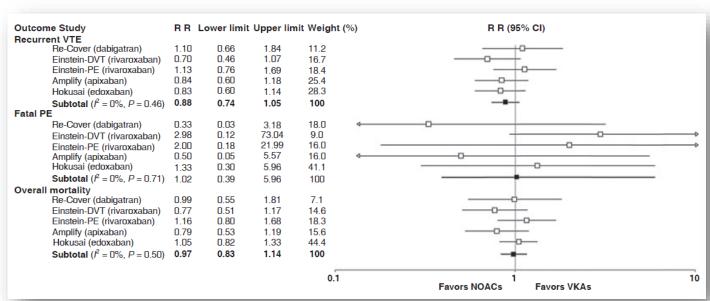
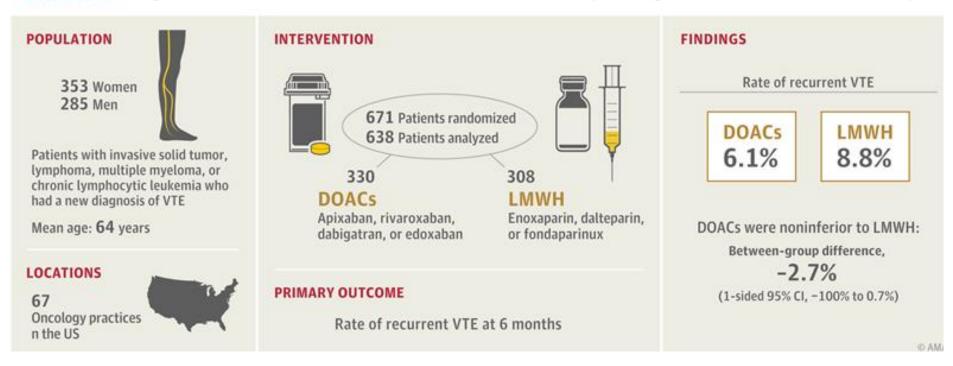



Figure 5 Percentage of patients in each dosing group who have ever had a therapeutic aPTT value over time. aPTT = activated partial thromboplastin time.

Efficacy and Safety of DOACs for VTE Treatment: Meta-Analysis



Comparative effectiveness DOAC vs LMWH for VTE in cancer

CANVAS Pragmatic Trial

QUESTION Among patients with cancer and a venous thromboembolism (VTE) event, are direct oral anticoagulants (DOACs) noninferior to low-molecular-weight heparin (LMWH) for preventing recurrent VTE events?

CONCLUSION Among adults with cancer and VTE, DOACs were noninferior to LMWH for preventing recurrent VTE over 6-month follow-up.

Anticoagulation for Acute PE: Evidence-Based Guideline Recommendations

Suggested Not addressed Not recommended	ESC/ERS [2]	PERT [12]	CHEST [13]	AHA [14]	ASH [16]	NICE [20]
Therapeutic anticoagulation should be initiated while awaiting diagnostic results if the pretest probability of PE is intermediate or high and the bleeding risk is low		Ø				⊘ a
Therapeutic anticoagulation should be given to all patients with confirmed PE who do not have a contraindication				⊘ b		
Immediate anticoagulant choice in high-risk PE if advanced therapies are considered: unfractionated heparin		Ø	1			
Immediate anticoagulant in intermediate-high risk PE not requiring advanced therapies: LMWH or DOAC (unless contraindications)		\triangle			e e	Ø
Immediate anticoagulant choice in low-risk PE: DOAC (unless contraindications)			Λ		e e	
Immediate anticoagulant choice in patients with HIT or a history of HIT: parenteral direct thrombin inhibitor or fondaparinux	⊘ c			⊘ d	⊘ f	
For oral anticoagulation in the treatment phase of PE, DOAC is recommended over VKA unless there is severe kidney disease, concomitant use of interacting drugs, or antiphospholipid syndrome	od d					

a. If PE unlikely, but D-dimer cannot be offered within 4 hours, NICE 2020 guidelines recommend interim anticoagulation while awaiting results

b. Therapeutic anticoagulation with LMWH, IV/SC heparin, or fondaparinux is recommended for all patients with confirmed PE.

c. No preference for parenteral or oral anticoagulation for intermediate or low-risk PE in the formal recommendations; LMWH or fondaparinux preferred over UFH.

d. Recommends danaparoid, lepirudin, argatroban or bivalirudin; ESC 2019 recommends fondaparinux if allergy or adverse reaction to LMWH

e. ASH does not differentiate the choice of agents based on acuity of care

f. ASH provides specific comments on the management of HIT in VTE into a dedicated guidelines [18]

Advanced Therapies

Fibrinolysis

Catheter-Directed Therapy

Surgical Embolectomy

Mechanical Circulatory Support

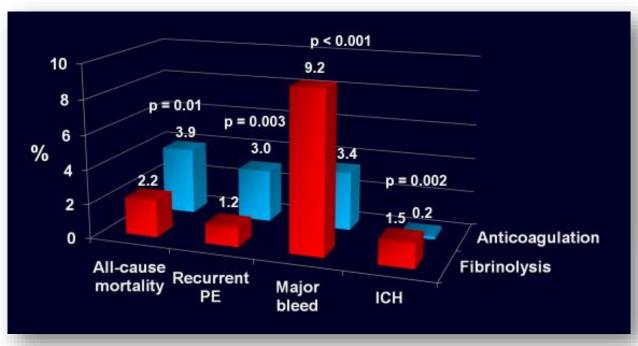
IVC Filter

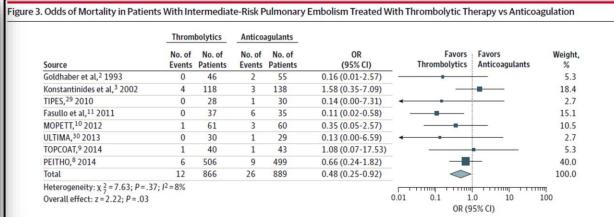
Advanced Therapies for Acute PE: Evidence-Based Guideline Recommendations

Suggested Not addressed Not recommended	ESC/ERS [2]	PERT [12]	CHEST [13]	AHA [10, 14]	ASH [16]	NICE [20]
Systemic fibrinolysis in hemodynamically unstable PE patients			Ø			
Systemic fibrinolysis in hemodynamically stable experiencing hemodynamic and/or respiratory worsening			Ø			
Reduced dose systemic fibrinolysis	8	⊘ _b	<u> </u>			
Routine use of systemic fibrinolysis in hemodynamically stable PE patients	8	8	83	8	8	83
Surgical embolectomy in hemodynamically unstable PE patients	Ø		<u> </u>	1		⊘ e
CDIs in hemodynamically unstable PE patients in whom systemic fibrinolysis has failed or is contraindicated	Ø		Ø	Ø	⊘ c	⚠ f
CDIs in hemodynamically stable experiencing hemodynamic and/or respiratory worsening	Ø	⊘	Ø	⊘	<u></u> d	1 f
Extracorporeal Membrane Oxygenation (ECMO)	⊘ a		<u> </u>		Λ	\triangle

a. ECMO may be considered in combination with surgical embolectomy or catheter-directed therapies in patients with refractory cardiogenic shock.

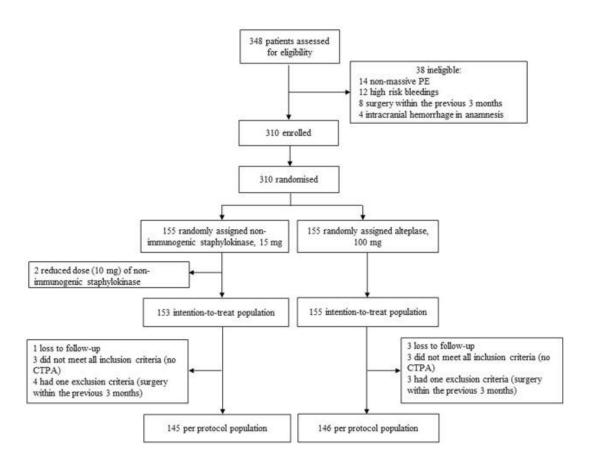
b. In high-risk patients with relative contraindications to systemic fibrinolysis

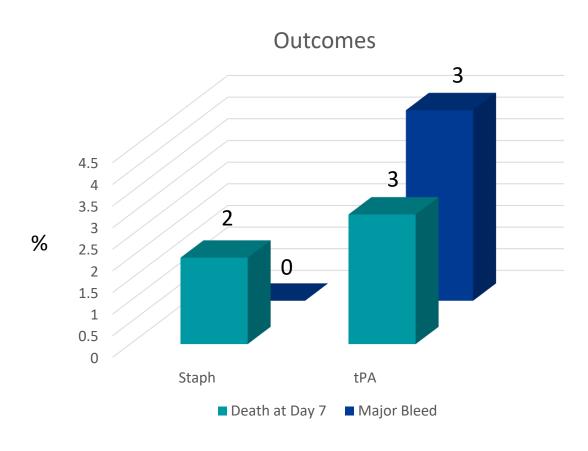

c. In centers with the appropriate infrastructure, clinical staff, and procedural experience

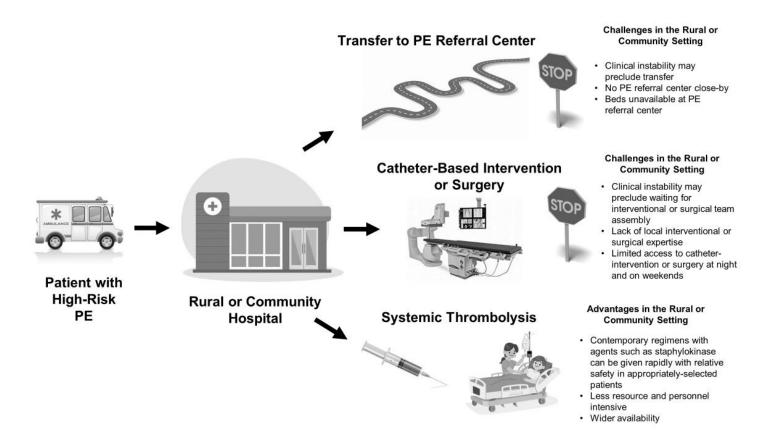

d. Prefer systemic fibrinolysis and perform close cardiovascular monitoring to promptly identify the development of hemodynamic compromise.

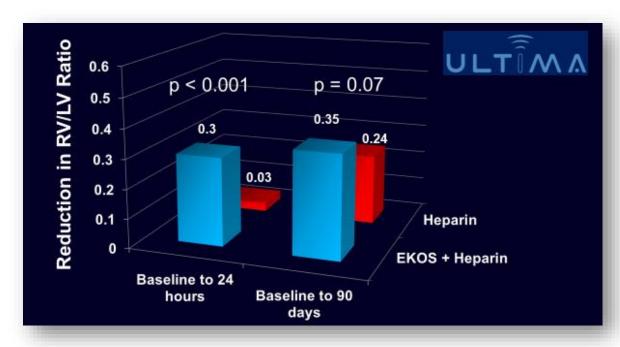
e. Surgical thrombectomy may occasionally be performed for patients with a life-threatening PE

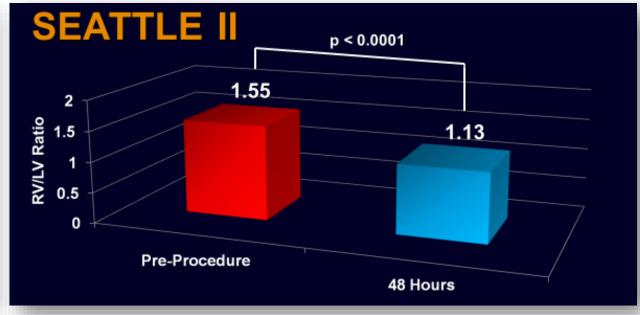
f. Catheter-based embolectomy should only be used within the confines of research protocols due the absence of adequate supporting clinical trials


Systemic Fibrinolysis

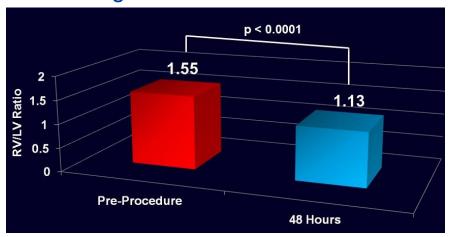



FORPE: Non-immunogenic Recombinant Staphylokinase versus Alteplase for High-Risk PE

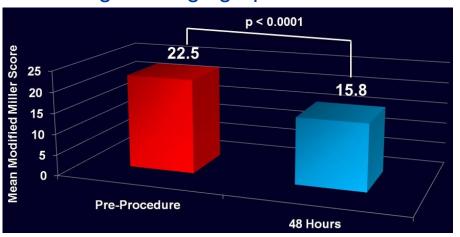



Systemic Fibrinolysis: A Role in Today's Landscape

Ultrasound-Facilitated Catheter-Directed Fibrinolysis


Overcoming the Hurdle of Intracranial Hemorrhage

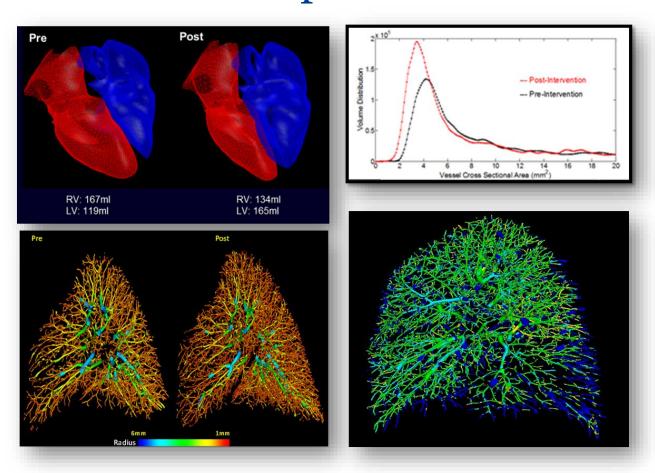
Study	Intracranial Hemorrhage (Fibrinolysis Group)
ICOPER (Goldhaber SZ, et al. 1999)	9/304 (3.0%)
PEITHO (Meyer G, et al. 2014)	10/506 (2.0%)
ULTIMA (Kucher N, et al. 2013)	0/30 (0%)
SEATTLE II (Piazza G, et al. 2015)	0/150 (0%)

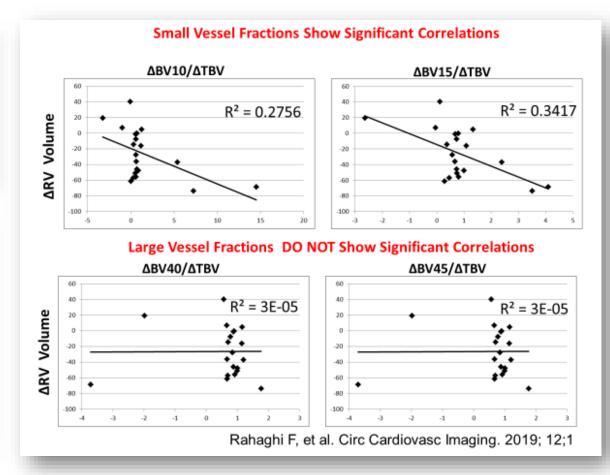


The SEATTLE II Paradox

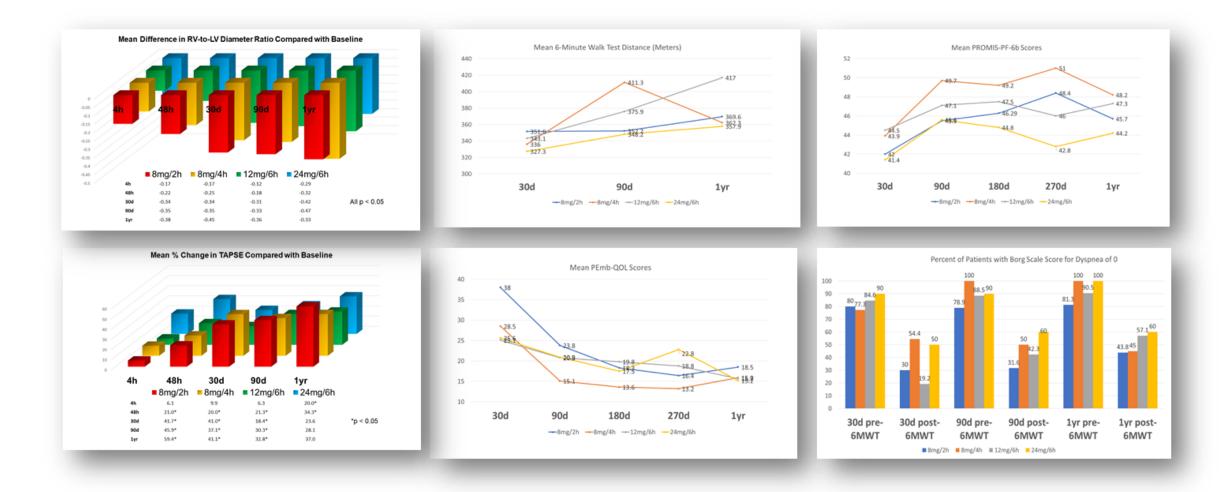
Change in RV/LV Diameter Ratio

Change in Angiographic Obstruction

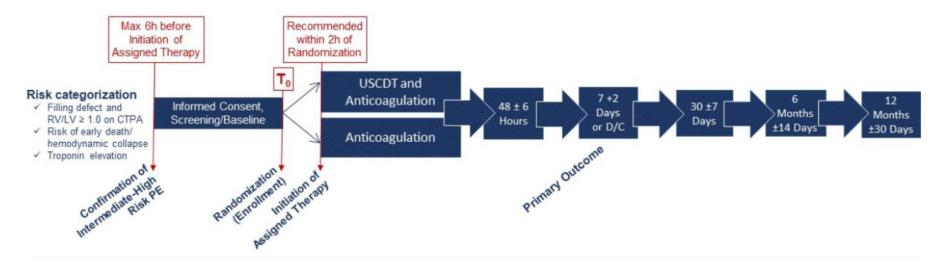



While most patients have normalization of RV size on chest CT, the average observed reduction in angiographic obstruction (modified Miller score) is only 30%.

This paradox suggests that symptomatic improvement and reduction in RV size may be achieved by mechanisms in addition to reduction in proximal pulmonary artery obstruction.


SEATTLE-3D: Correlating the Change in RV Volume to Vascular Response

OPTALYSE-PE: Long-Term Recovery

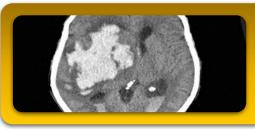


HI-PEITHO: Randomized Controlled Trial

A randomized trial of ultrasound-facilitated, catheter-directed, thrombolysis versus anticoagulation for acute intermediate-high risk pulmonary embolism:

The Higher-risk Pulmonary Embolism THrOmbolysis study (HI-PEITHO)

ENROLLING NOW!



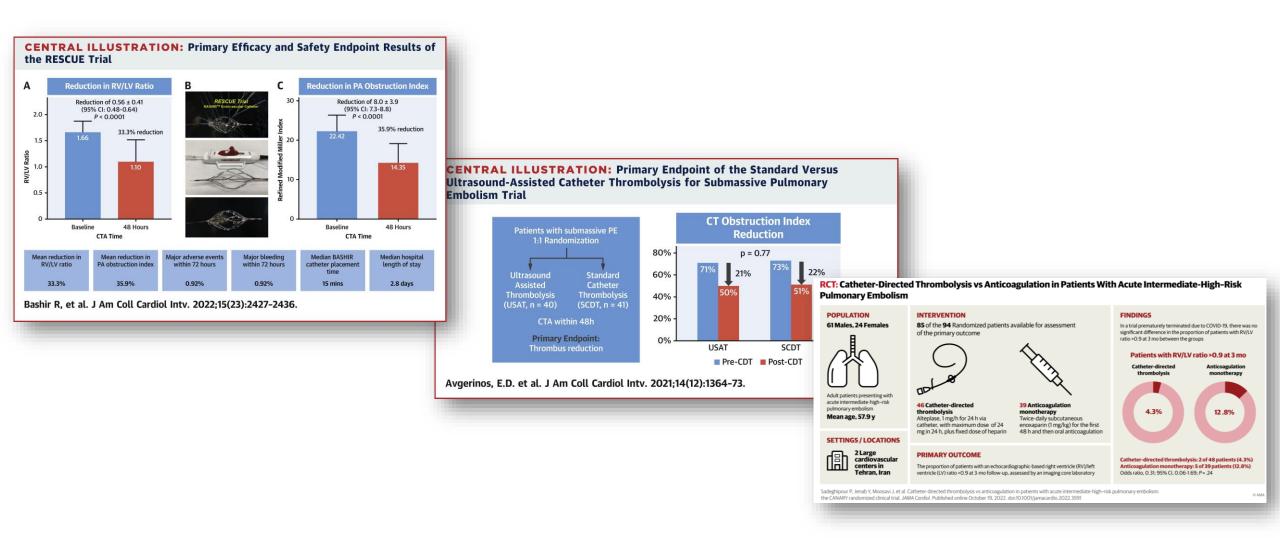
KNOCOUT-PE Prospective Cohort: Safety in 489 Real-World Patients Undergoing US-Facilitated CDT

Major Bleeding

• 1.8% (comparable to mechanical thrombectomy)

Intracranial Hemorrhage

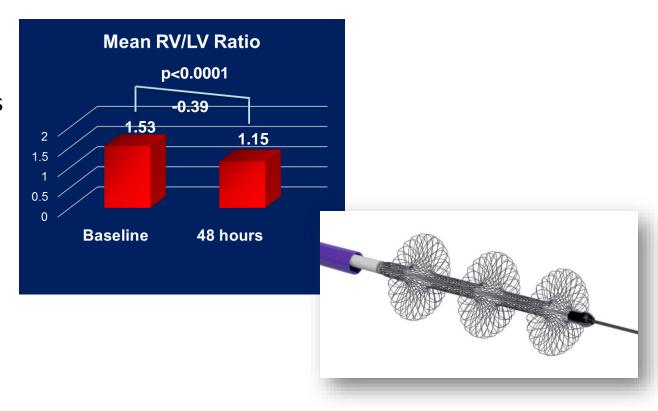
• 0%



Access Site Bleed

• 0.8%

RESCUE, SUNSET sPE, and CANARY: CDT Trials


Aspiration Embolectomy with the FlowTriever: FLARE

Prospective, multicenter, single-arm study evaluating the FlowTriever System in 106 patients with acute PE.

Patients with proximal PE and RV/LV ratio≥0.9 were eligible to participate.

3.8% rate of major adverse events.

PEERLESS 2 will provide more data.

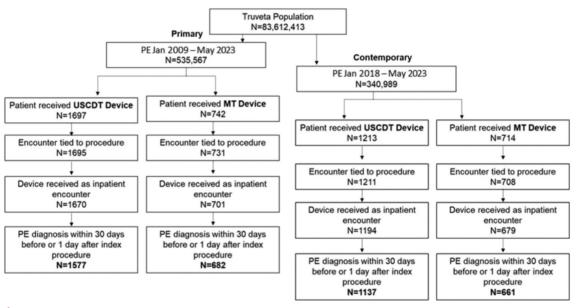
Mechanical Thrombectomy in High-Risk PE: FLAME Registry

Table 1. Demographics, Medical History, and Clinical Presentation

riesentation						
	FlowTriever arm (n=53)	Context arm (n=61)				
Age, y	64.8±15.3	61.6±13.9				
Female	26 (49.1%)	35 (57.4%)				
BMI, kg/m²	32.2±6.1	33.9±8.5				
Race						
American Indian or Alaskan Native	0 (0.0%)	0 (0.0%)				
Asian	0 (0.0%)	0 (0.0%)				
Black or African American	16 (30.2%)	40 (65.6%)				
Native Hawaiian or Pacific Islander	0 (0.0%)	0 (0.0%)				
White	33 (62.3%)	18 (29.5%)				
Other	0 (0.0%)	1 (1.6%)				
Not provided	4 (7.5%)	2 (3.3%)				

Clinical presentation at admission or time of high-risk PE diagnosis						
SCAI shock stage*						
Α	2 (3.8%)	1 (1.6%)				
В	11 (20.8%)	6 (9.8%)				
С	29 (54.7%)	22 (36.1%)				
D	5 (9.4%)	12 (19.7%)				
E	6 (11.3%)	20 (32.8%)				
Systolic BP, mmHg	97.4±21.4 n=49	93.5±33.4 n=59				
Diastolic BP, mmHg	65.5±14.7 n=49	57.8±23.5 n=59				
Heart rate, bpm	99.9±22.6 n=48	103.1±29.4 n=58				
Tachycardia, >100 bpm	29 (54.7%)	34 (55.7%)				

 Table 2.
 Primary End Point in the FlowTriever Arm


	FlowTriever arm (n=53)	Performance goal	
Primary end point*	9 (17.0%†; 8.1%–9.8%)	32.0%	

CONCLUSIONS: Among patients selected for mechanical thrombectomy with the FlowTriever System, a significantly lower associated rate of in-hospital adverse clinical outcomes was observed compared with a prespecified performance goal, primarily driven by low all-cause mortality of 1.9%.

Ultrasound-Facilitated, Catheter-Based Fibrinolysis vs Mechanical Thrombectomy

REAL-PE

	Primary (2009-2023) Contemporary (2018-2		2023)				
	p-value	ie USCDT MT		p-value	USCDT	MT	
Transfusion 7 days	<0.0001	30 (1.9%)	40 (5.9%)	<0.0001	22 (1.9%)	39 (5.9%)	
Hgb decrease >2	<0.0001	842 (53.4%)	460 (67.4%)	<0.0001	580 (51.0%)	444 (67.2%)	
Hgb decrease >5	<0.0001	233 (14.8%)	154 (22.6%)	<0.0001	154 (13.5%)	150 (22.7%)	
Major Bleed Dx Code	0.137	180 (11.4%)	93 (13.6%)	0.0207	114 (10.0%)	90 (13.6%)	
ISTH Major Bleed	0.0018	195 (12.4%)	118 (17.3%)	0.0002	125 (11.0%)	114 (17.2%)	
BARC3B Major Bleed	0.019	186 (11.8%)	105 (15.4%)	0.0024	120 (10.6%)	102 (15.4%)	

Figure 1.

Patient flowchart for inclusion in the primary and contemporary cohorts.

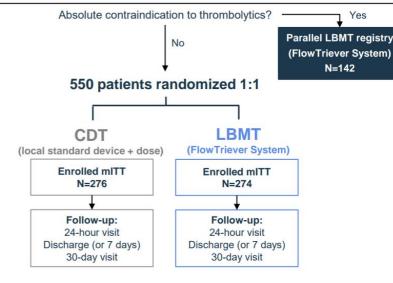
PEERLESS: No Difference in Clinical Outcomes

Trial design

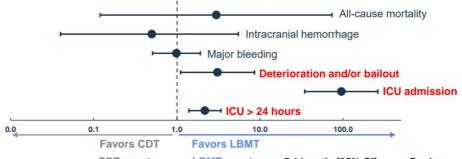
Eligibility criteria Symptom onset within 14 days

- SBP > 90 mmHg + central clot + RV dysfunction
- Intervention planned within 72 hours
- + ≥ 1 additional clinical risk factor
 - Elevated cardiac troponin
- History of heart failure
- History of chronic lung disease Heart rate ≥ 110 bpm
- SBP < 100 mmHa

Inclusion


Exclusion

- Unable to receive AC
- Right heart clot in transit
- Life expectancy < 30 days
- CTEPH/CTED
- sPAP ≥ 70 mmHg on invasive hemodynamics


Treatment and follow-up

Yes

N=142

Results: Win ratio components

	CDT events	LBMT events	Odds ratio [95% CI]	P value	
All-cause mortality	1 (0.4)	0 (0.0)	2.99 [0.12–73.70]	1.00	Ī
Intracranial hemorrhage	1 (0.4)	2 (0.7)	0.50 [0.04–5.51]	0.62	
Major bleeding	19 (6.9)	19 (6.9)	0.99 [0.51–1.92]	1.00	
Clinical deterioration and/or escalation to bailout therapy	15 (5.4)	5 (1.8)	3.09 [1.11–8.63]	0.038	
Postprocedural ICU admission	272 (98.6)	114 (41.6)	95.4 [34.6–263.6]	< 0.001	
ICU stay > 24 hours*	178 (65.4)	53 (46.5)	2.18 [1.40–3.40]	< 0.001	

Removing escalation to bailout patients (because of bias against CDT), there is no statistical difference (LBMT vs. CDT: 4 vs 10 patients; Fisher's Exact 0.17).

RR ≥ 30 breaths per min

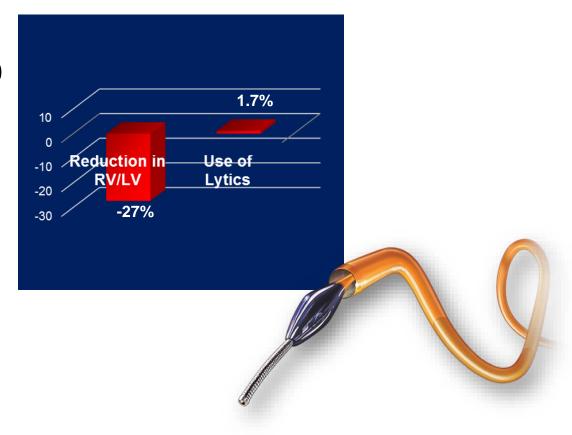
Oxygen saturation < 90%

Syncope related to PE Elevated lactate

PEERLESS: No Difference in Major Bleeding

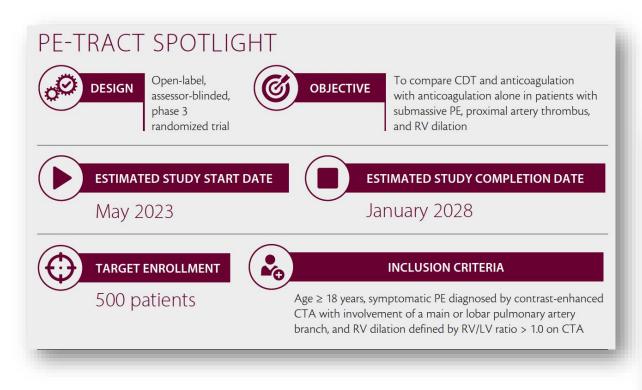
Bleeding events through discharge / 7 days

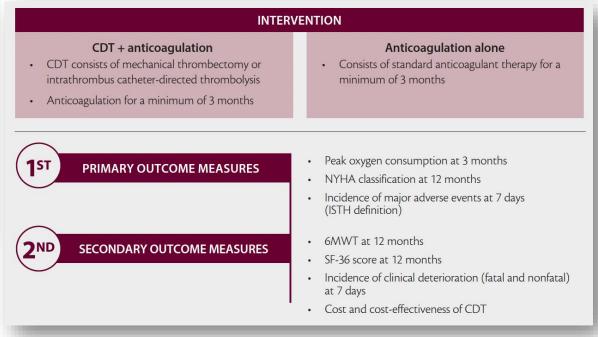
	CDT	LBMT	
	N = 276	N = 274	P value
Major bleeding (ISTH)	19 (6.9)	19 (6.9)	1.00
Adjudicated reasons for major bleeding			
Fatal bleeding*	1 (0.4)	0 (0)	
Symptomatic bleeding in a critical area or organ [‡]	2 (0.7)	2 (0.7)	
Intracranial hemorrhage [†]	1	2	
Hemarthrosis	1	0	
Hgb drop ≥ 2 g/dL (1.24 mmol/L) and/or transfusion ≥ 2 units	16 (5.8)	17 (6.2)	
Access site source	10	8	
Transfusions administered	8	1	
# units transfused	3.3 ± 1.8	2.0	
Clinically relevant non-major bleeding events [‡]	9 (3.3)	7 (2.6)	0.80
Minor bleeding events [‡]	1 (0.4)	6 (2.2)	0.07

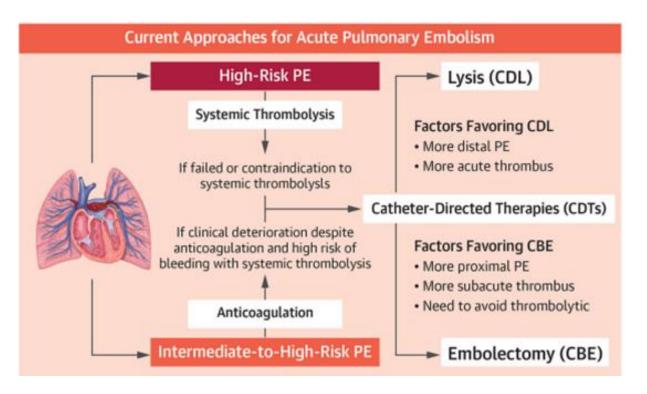

Thrombus Aspiration for Acute PE: EXTRACT-PE

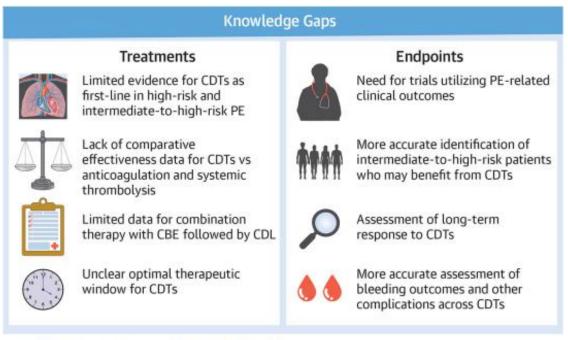
Prospective, multicenter, single-arm study evaluating the Indigo Aspiration System in 119 patients with acute PE.

Patients with proximal PE and RV/LV ratio≥0.9 were eligible to participate.


1.7% rate of major adverse events.

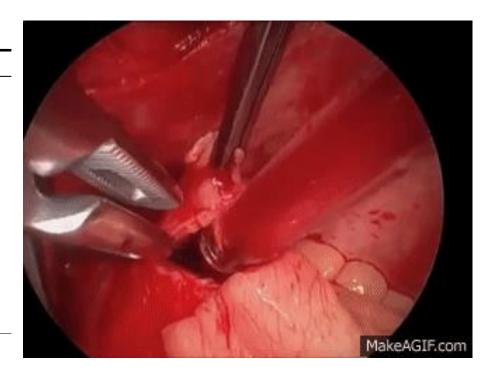

STRIKE-PE and STORM-PE will provide more data.


PE-TRACT: An NIH-Funded Trial



Current Approaches to Catheter-Based Therapy

Zuin M, et al. JACC Cardiovasc Interv. 2024;17(19):2259-2273.



Surgical Embolectomy

TABLE 2. Indications for surgical embolectomy (n = 47)

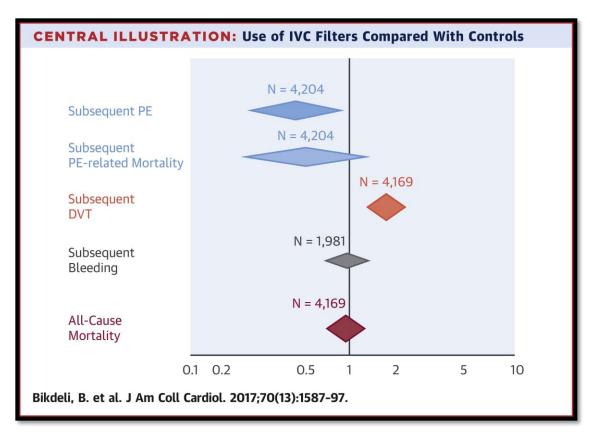
Indication	N (%)
Contraindications to thrombolysis	21 (45%)
Recent surgical intervention	10 (21%)
Active bleeding	3 (6%)
Stroke	4 (9%)
Other	4 (9%)
Failed medical treatment	5 (10%)
Failure of thrombolytics	4 (9%)
Failure of catheter embolectomy	1 (2%)
Large RA-RV thrombus	5 (10%)
RV hemodynamic dysfunction	15 (32%)
Large PFO	1 (2%)
/ D: 1	

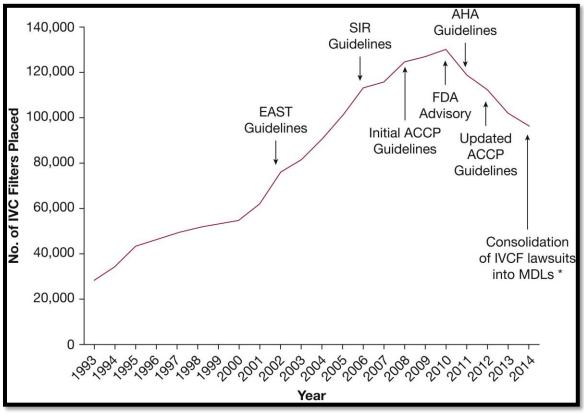
RA-RV, Right atrium—right ventricle; PFO, patent foramen ovale.

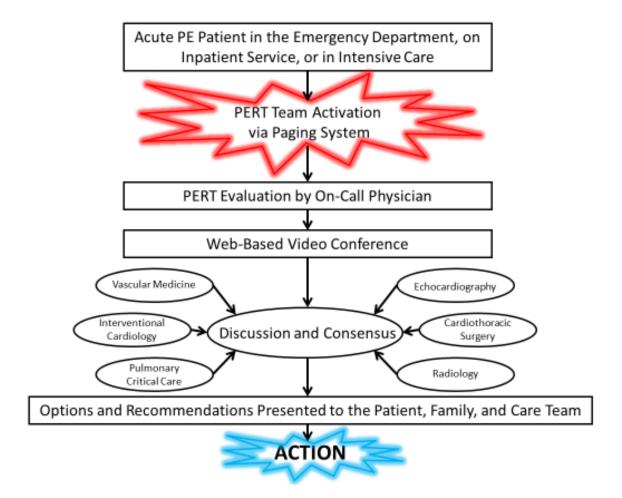
Surgical embolectomy requires a median sternotomy and cardiopulmonary bypass.

ECMO for Catastrophic PE

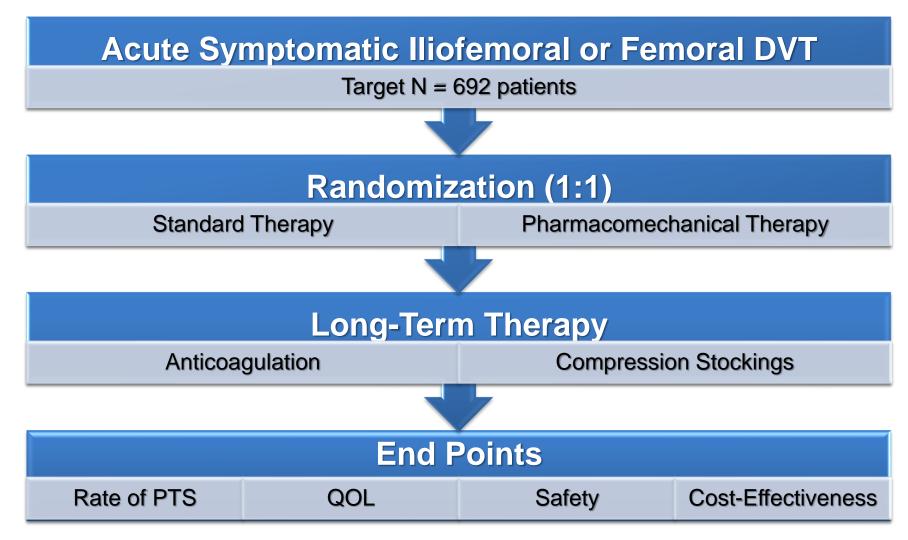
20 years of case reports and series of PE patients treated with ECMO demonstrate 70% survival.


Survival rates are similar whether ECMO was used alone or with another advanced therapy.


Veno-arterial (VA) ECMO has been used effectively to bridge to surgical or catheter embolectomy or simply to "buy time."


Inferior Vena Cava Filters

PE Response Teams



6.8 Recommendations for multidisciplinary pulmonary embolism teams

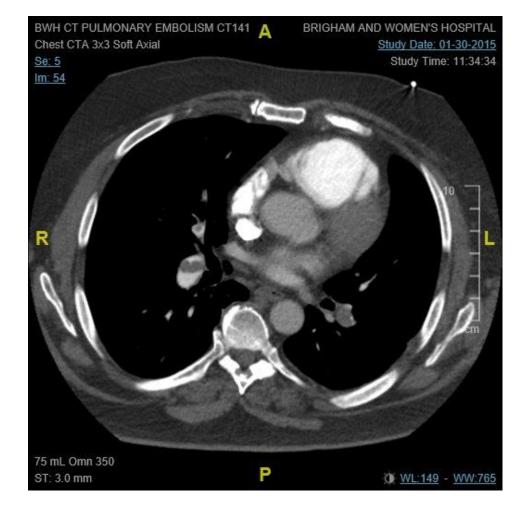
Recommendation	Class ^a	Level ^b
Set-up of a multidisciplinary team and a pro-		
gramme for the management of high- and (in		
selected cases) intermediate-risk PE should be	lla	С
considered, depending on the resources and		
expertise available in each hospital.		

ATTRACT Trial: Pharmacomechanical Therapy for Iliofemoral and Femoral DVT

Pharmacomechanical Therapy for DVT: ATTRACT

Outcome	Pharmacomechanical	No- Pharmacomechanical	p-value			
	N=336	N=355				
Major bleeding (10 days)	1.7%	0.3%	0.049			
Any bleeding (10 days)	4.5%	1.7%	0.034			
	0		Outcome (24 months)	Pharmacomechanical	No- Pharmacomechanical	p-value
Fatal bleeding	0	0	months)	N=336	N=355	
Intracranial	0	0	Any PTS	46.7%	48.2%	0.56
hemorrhage			Recurrent VTE	12.5%	8.5%	0.09
			SF-36 (Overall QOL)	11.8	10.1	0.37
			VEINES (Venous QOL)	27.7	23.5	80.0
			Moderate or Severe PTS	Overall 17.9% Iliofemoral 18.4% Femoral-popliteal 17.1%	Overall 23.7% Iliofemoral 28.2% Femoral-popliteal 18.1%	0.035

Case No. 3


A 82-year-old man with obesity, coronary artery disease, and carotid artery disease presents with right-sided pleuritic pain and dyspnea.

He denies any recent trauma, surgery, or immobility.

His heart rate is 108 bpm, blood pressure 148/72 mmHg, and O_2 saturation 89% on room air.

His high sensitivity cardiac troponin T is normal.

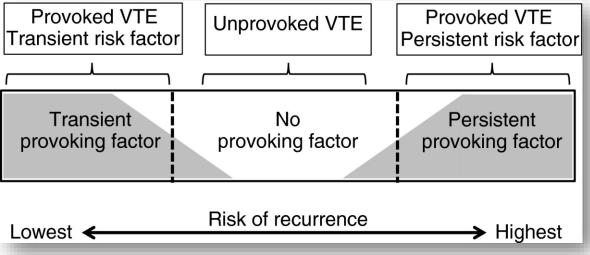
He undergoes CT angiography.

Question No. 3

The patient is admitted and started on heparin with a goal PTT of 60-80 seconds. He improves steadily and is ready for discharge 4 days later. Which is the preferred regimen for oral anticoagulation in this patient?

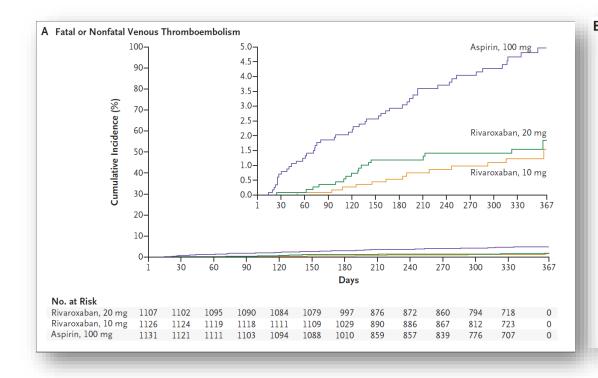
- a) Warfarin with an INR target of 2-3 for 12 months then 1.5-2 thereafter
- b) Apixaban 5 mg twice daily for 6 months and then 2.5 mg twice daily indefinitely
- c) Dabigatran 150 mg twice daily for 6 months and then 75 mg twice daily indefinitely
- d) Enoxaparin 120 mg twice daily indefinitely

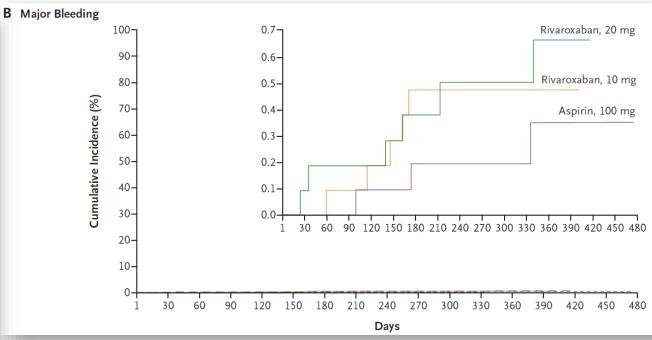
Question No. 3


The patient is admitted and started on heparin with a goal PTT of 60-80 seconds. He improves steadily and is ready for discharge 4 days later. Which is the preferred regimen for oral anticoagulation in this patient?

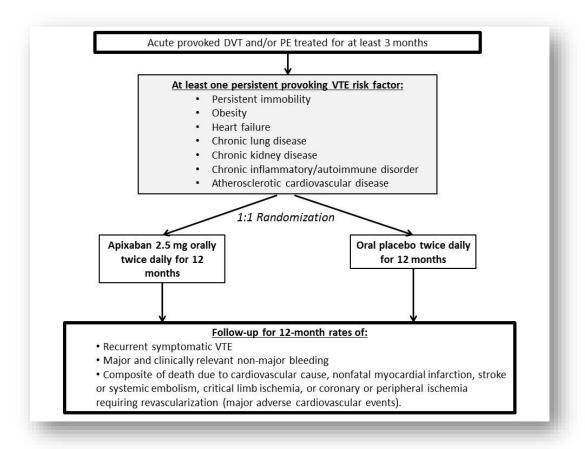
- a) Warfarin with an INR target of 2-3 for 12 months then 1.5-2 thereafter
- b) Apixaban 5 mg twice daily for 6 months and then 2.5 mg twice daily indefinitely
- c) Dabigatran 150 mg twice daily for 6 months and then 75 mg twice daily indefinitely
- d) Enoxaparin 120 mg twice daily indefinitely

Explanation: For unprovoked VTE, indefinite duration anticoagulation is recommended. Low-intensity apixaban offers the best safety and efficacy of the options given for this patient.

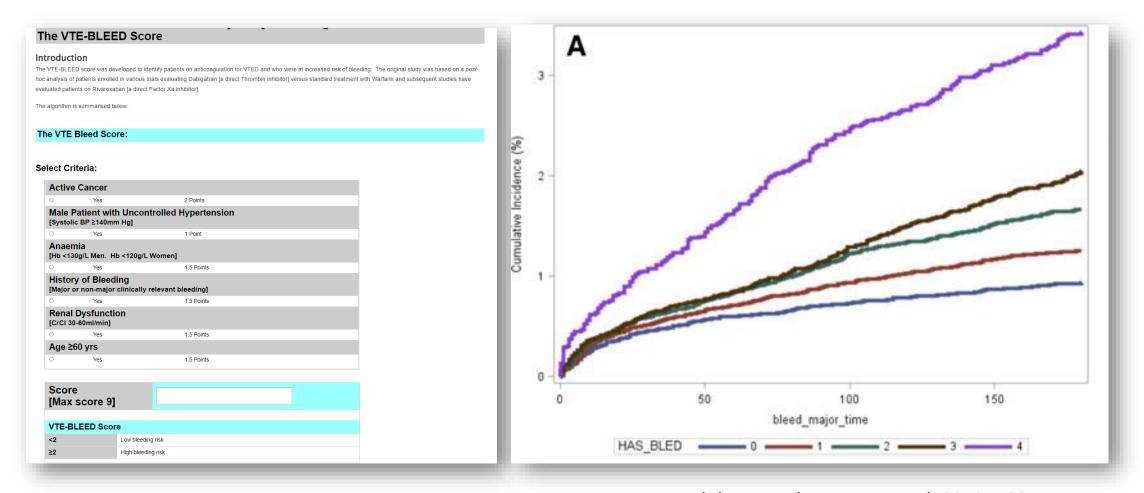

Risk of Recurrence: ISTH and ESC Guidelines



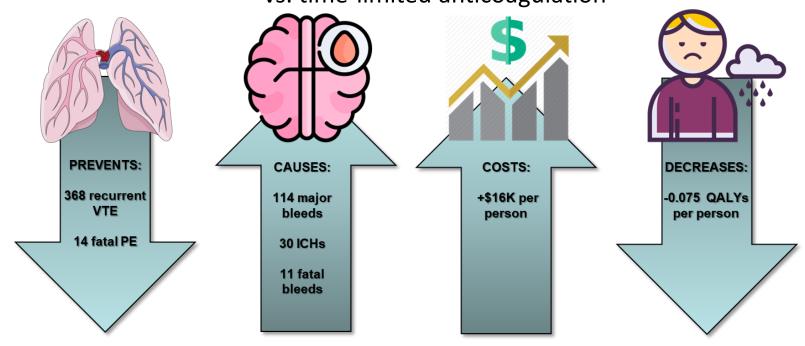
	Estimated risk for long-term recurrence ^a	Risk factor category for index PE ^b	Examples ^b
Low (<3% per year) Low (<3% per year) associated with >10-fold increased risk for the index VTE event (compared to		associated with >10-fold increased risk for the index VTE event (compared to	 Surgery with general anaesthesia for >30 min Confined to bed in hospital (only "bathroom privileges") for ≥3 days due to an acute illness, or acute exacerbation of a chronic illness Trauma with fractures
	Intermediate (3–8% per year)	Transient or reversible factors associated with ≤10-fold increased risk for first (index) VTE	 Minor surgery (general anaesthesia for <30 min) Admission to hospital for <3 days with an acute illness Oestrogen therapy/contraception Pregnancy or puerperium Confined to bed out of hospital for ≥3 days with an acute illness Leg injury (without fracture) associated with reduced mobility for ≥3 days Long-haul flight
		Non-malignant persistent risk factors	Inflammatory bowel disease Active autoimmune disease
		No identifiable risk factor	
	High (>8% per year)		 Active cancer One or more previous episodes of VTE in the absence of a major transient or reversible factor Antiphospholipid antibody syndrome

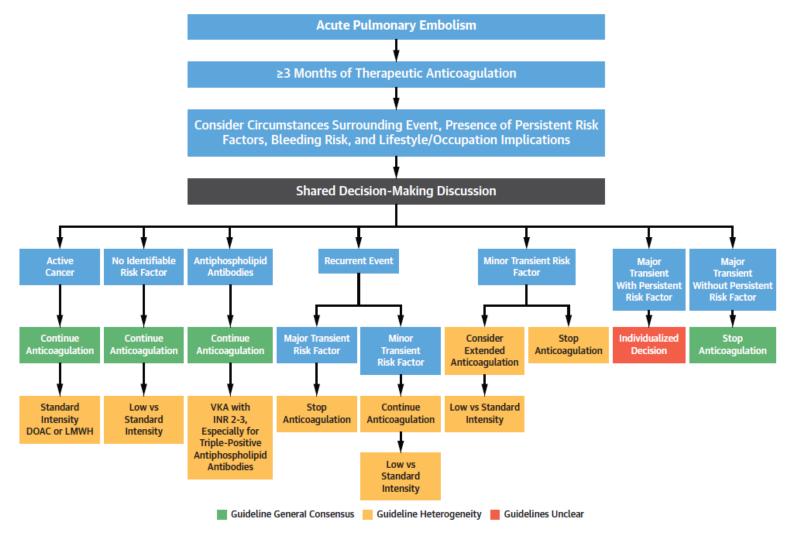

Extended Secondary Prevention for All VTE: EINSTEIN CHOICE

HI-PRO Trial: 600 High-Risk Patients with Provoked VTE



Shared Decision-Making: Patient Preferences and Attitudes Toward Bleeding and VTE Recurrence


Bleeding Risk Must Be Part of the Equation


A Cautionary Note on Indefinite Anticoagulation: A Canadian Cost-Effectiveness Study

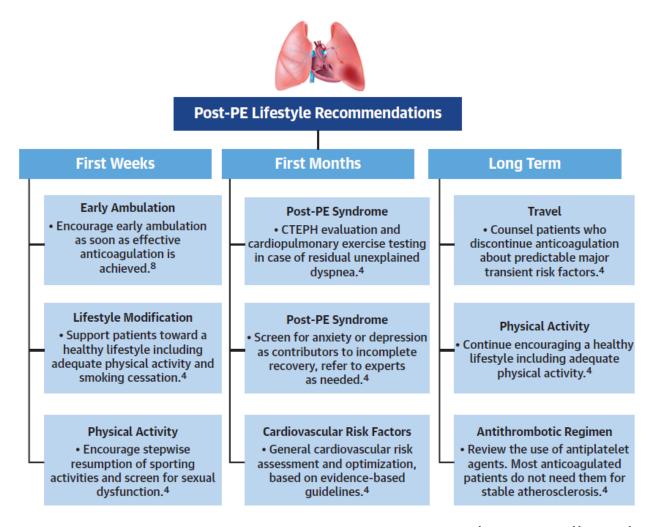
In a hypothetical cohort of 1000 patients with a first unprovoked VTE, indefinite vs. time-limited anticoagulation

Optimal Duration of Anticoagulation: Guideline-Based Care

Follow-Up Care for PE

Suggested Not addressed Not recommended	ESC/ERS [2]	PERT [12]	CHEST [13]	AHA [14]	ASH [15]	NICE [20]
Routine re-evaluation of patients at 3-6 months after the index PE event			1			\wedge
TTE and or V/Q scan in patients with persistent otherwise unexplained dyspnea and/or exercise intolerance after 3 months ^b	>	>	<u> </u>	⊘ a		
Refer symptomatic patients with PH and/or mismatched perfusion defects at V/Q scan to a referral center for CTEPH		(\triangle			

- a. After 6 weeks to evaluate persistent pulmonary hypertension
- b. Preference of imaging is generally based on center's expertise and resources availability


Lifestyle Modification

Suggested Not addressed Not recommended	ESC/ERS [2]	PERT [12]	CHEST [13]	AHA [14]	ASH [16]	NICE [20]
Smoking Cessation	⊘ a					\triangle
Diet	⊘ a	1	<u> </u>			1
Weight loss strategy for overweight/obesity	<u> </u>	1	<u> </u>			Λ
Return to work			1		1	1
Physical activity/exercise	⊘ a				1	1
Participation in sexual activity			<u> </u>			<u> </u>

a. The ESC Guideline text stated "work collaboratively with patients using behavioral frameworks and motivational interviewing, to identify and modify associated risk factors (smoking cessation, diet, physical activity, and exercise.

Lifestyle Modification

KEY TAKE HOME POINTS

- 1. Risk stratification is critical to identify VTE patients who may benefit from advanced therapy.
- 2. Selection of advanced therapies depends on assessment of the patient's risk of adverse outcomes and major bleeding.
- 3. Determining the optimal anticoagulation regimen should consider risk of recurrence, risk of bleeding, and patient preference.

REFERENCES

Chopard R, Albertsen IE, Piazza G. Diagnosis and Treatment of Lower Extremity Venous Thromboembolism: A Review. JAMA. 2020;324:1765-1776.

Piazza G. Advanced Management of Intermediate- and High-Risk Pulmonary Embolism: JACC Focus Seminar. J Am Coll Cardiol. 2020;76:2117-2127.

Zuin M, et al. International Clinical Practice Guideline Recommendations for Acute Pulmonary Embolism: Harmony, Dissonance, and Silence. J Am Coll Cardiol. 2024;84:1561-1577.

Konstantinides SV, et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration With the European Respiratory Society (ERS): The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2020; 00:1

